Search results for " construction technologies"

showing 6 items of 6 documents

Mechanical construction and installation of the ATLAS tile calorimeter

2013

This paper summarises the mechanical construction andinstallation of the Tile Calorimeter for the ATLASexperiment at the Large Hadron Collider in CERN, Switzerland. The TileCalorimeter is a sampling calorimeter using scintillator as the sensitivedetector and steel as the absorber and covers the central region of the ATLASexperiment up to pseudorapidities ±1.7. The mechanical construction ofthe Tile Calorimeter occurred over a periodof about 10 years beginning in 1995 with the completionof the Technical Design Report and ending in 2006 with the installationof the final module in the ATLAS cavern. Duringthis period approximately 2600 metric tons of steel were transformedinto a laminated struc…

EngineeringLarge Hadron ColliderAtlas (topology)business.industryPhysics::Instrumentation and DetectorsNuclear engineeringATLAS experimentCalorimeters; Detector design and construction technologies and materialsNuclear physicsTile calorimeterCalorimetersPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentDetectors and Experimental TechniquesMechanical constructionDetector design and construction technologies and materialsNuclear ExperimentbusinessInstrumentationMathematical Physics
researchProduct

Gothic architecture: technologies and construction site management

2018

During the Gothic times, between the XIV and the XV centuries, depending on the location, many interesting developments occurred. Such an architectural movement moved towards completely new directions and ideas if compared to the previous centuries’ construction. First of all the concept of the space, inner or external, that became highly polycentric and driven to the highness and to a certain dematerialization of the solids. Such a novel vision was often related to the new religious fervour of that time. Some examples are the reduction of the masonry’s sections, a massive usage of large coloured glazing, and the creation of light groined vaults. On the exterior, all of that corresponded to…

Gothic architecture construction technologies KnowledgeSettore ICAR/10 - Architettura Tecnica
researchProduct

Validation of high voltage power supplies for the 1-inch photomultipliers of AugerPrime, the Pierre Auger Observatory upgrade

2022

In the framework of the upgrade of the Pierre Auger Observatory, a new high voltage module is being employed for the power supply of the 1-inch photomultiplier added to each water-Cherenkov detector of the surface array with the aim of increasing the dynamic range of the measurements. This module is located in a dedicated box near the electronics and comprises a low consumption DC-DC converter hosted inside an aluminum box. All the modules have undergone specific tests to verify their reliability in the extreme environmental conditions of the Argentinian pampa. In this paper, we describe the validation procedure and the facility developed to this aim. The successful results of the tests on …

High Energy Astrophysical Phenomena (astro-ph.HE)Physics - Instrumentation and DetectorsLarge detector systems for particle and astroparticle physicsCherenkov detectorsSettore FIS/01 - Fisica SperimentaleFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)Detector design and construction technologies and materialsAstrophysics - High Energy Astrophysical PhenomenaInstrumentationVoltage distributionsMathematical Physics
researchProduct

NEXT-100 Technical Design Report (TDR). Executive summary

2012

[EN] In this Technical Design Report (TDR) we describe the NEXT-100 detector that will search for neutrinoless double beta decay (ßß0v) in 136XE at the Laboratorio Subterráneo de Canfranc (LSC), in Spain. The document formalizes the design presented in our Conceptual Design Report (CDR): an electroluminescence time projection chamber, with separate readout planes for calorimetry and tracking, located, respectively, behind cathode and anode. The detector is designed to hold a maximum of about 150 kg of xenon at 15 bar, or 100 kg at 10 bar. This option builds in the capability to increase the total isotope mass by 50% while keeping the operating pressure at a manageable level. The readout pla…

MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURASPhotomultiplierPhysics - Instrumentation and DetectorsBar (music)Time projection chambersFOS: Physical scienceschemistry.chemical_elementWavelength shifterTracking (particle physics)7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentTECNOLOGIA ELECTRONICAHigh Energy Physics - Experiment (hep-ex)chemistry.chemical_compoundXenonOptics0103 physical sciences010306 general physicsInstrumentationMathematical PhysicsPhysicsTime projection chamber010308 nuclear & particles physicsbusiness.industryDetectorFísicaTetraphenyl butadieneDetectorsInstrumentation and Detectors (physics.ins-det)Gas detectorsDetectors de gasoschemistryDetector design and construction technologies and materialsbusinessJournal of Instrumentation
researchProduct

Dependence of polytetrafluoroethylene reflectance on thickness at visible and ultraviolet wavelengths in air

2020

[EN] Polytetrafluoroethylene (PTFE) is an excellent diffuse reflector widely used in light collection systems for particle physics experiments. However, the reflectance of PTFE is a function of its thickness. In this work, we investigate this dependence in air for light of wavelengths 260 nm and 450 nm using two complementary methods. We find that PTFE reflectance for thicknesses from 5 mm to 10 mm ranges from 92.5% to 94.5% at 450 nm, and from 90.0% to 92.0% at 260 nm We also see that the reflectance of PIFE of a given thickness can vary by as much as 2.7% within the same piece of material. Finally, we show that placing a specular reflector behind the PTFE can recover the loss of reflectan…

Physics - Instrumentation and DetectorsFOS: Physical sciencesLibrary science7. Clean energy01 natural sciences030218 nuclear medicine & medical imagingSynthetic materialsTECNOLOGIA ELECTRONICA03 medical and health sciences0302 clinical medicinePolitical science0103 physical sciencesmedia_common.cataloged_instanceEuropean unionInstrumentationUltraviolet radiationMathematical Physicsmedia_common010308 nuclear & particles physicsEuropean researchTime projection Chambers (TPC)Instrumentation and Detectors (physics.ins-det)Visible radiationDouble-beta decay detectorsReflectivityDetector design and construction technologies and materialsNational laboratory
researchProduct

The ALICE experiment at the CERN LHC

2008

Journal of Instrumentation 3(08), S08002 (2008). doi:10.1088/1748-0221/3/08/S08002

visible and IR photonsLiquid detectorshigh energyPhotonPhysics::Instrumentation and DetectorsTransition radiation detectorsTiming detectors01 natural sciencesOverall mechanics designParticle identificationSoftware architecturesParticle identification methodsGaseous detectorscluster findingDetector cooling and thermo-stabilizationDetector groundingParticle tracking detectors[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Special cablesDetector alignment and calibration methodsDetectors and Experimental TechniquesNuclear ExperimentVoltage distributions.Photon detectors for UVInstrumentationMathematical PhysicsQuantum chromodynamicsPhysicsLarge Hadron ColliderSpectrometersPhysicsDetectorcalibration and fitting methodsTransition radiation detectorScintillatorsData processing methodsAnalysis and statistical methodsData reduction methodsParticle physicsCherenkov and transition radiationTime projection chambers610dE/dx detectorsNuclear physicsCalorimetersPattern recognitionGamma detectors0103 physical sciencesddc:610Solid state detectors010306 general physicsMuonInstrumentation for heavy-ion acceleratorsSpectrometerLarge detector systems for particle and astroparticle physics010308 nuclear & particles physicsCERN; LHC; ALICE; heavy ion; QGPCherenkov detectorsComputingVoltage distributionsManufacturingscintillation and light emission processesanalysis and statistical methods; calorimeters; cherenkov and transition radiation; cherenkov detectors; computing; data processing methods; data reduction methods; de/dx detectors; detector alignment and calibration methods; detector cooling and thermo-stabilization; detector design and construction technologies and materials; detector grounding; gamma detectors; gaseous detectors; instrumentation for heavy-ion accelerators; instrumentation for particle accelerators and storage rings - high energy; large detector systems for particle and astroparticle physics; liquid detectors; manufacturing; overall mechanics design; particle identification methods; particle tracking detectors; pattern recognition; cluster finding; calibration and fitting methods; photon detectors for uv; visible and ir photons; scintillators; scintillation and light emission processes; simulation methods and programs; software architectures; solid state detectors; special cables; spectrometers; time projection chambers; timing detectors; transition radiation detectors; voltage distributionsInstrumentation for particle accelerators and storage ringsInstrumentation; Mathematical PhysicsHigh Energy Physics::ExperimentSimulation methods and programsDetector design and construction technologies and materials
researchProduct